FotoFirst NameLast NamePosition
Mykhaylo Andriluka People Detection and Tracking
Roland Angst Vision, Geometry, and Computational Perception
Tamay Aykut
Vahid Babaei
Pierpaolo Baccichet Distributed Media Systems
Volker Blanz Learning-Based Modeling of Objects
Volker Blanz Learning-Based Modeling of Objects
Martin Bokeloh Inverse Procedural Modeling
Adrian Butscher Geometry Processing and Discrete Differential Geometry
Renjie Chen Images and Geometry


Dr. Michael Zollhöfer

Visual Computing, Deep Learning and Optimization

Name of Research Group: Visual Computing, Deep Learning and Optimization
Homepage Research Group:
Personal Homepage:
Mentor Saarbrücken: Hans-Peter Seidel
Mentor Stanford: Pat Hanrahan
Research Mission: The primary focus of my research is to teach computers to reconstruct and analyze our world at frame rate based on visual input. The extracted knowledge is the foundation for a broad range of applications not only in visual effects, computer animation, autonomous driving and man-machine interaction, but is also essential in other related fields such as medicine and biomechanics. Especially, with the increasing popularity of virtual, augmented and mixed reality, there comes a rising demand for real-time low latency solutions to the underlying core problems.    My research tackles these challenges based on novel mathematical models and algorithms that enable computers to first reconstruct and subsequently analyze our world. The main focus is on fast and robust algorithms that approach the underlying reconstruction and machine learning problems for static as well as dynamic scenes. To this end, I develop key technology to invert the image formation models of computer graphics based on data-parallel optimization and state-of-the-art deep learning techniques.    The extraction of 3D and 4D information from visual data is highly challenging and under-constraint, since image formation convolves multiple physical dimensions into flat color measurements. 3D and 4D reconstruction at real-time rates poses additional challenges, since it involves the solution of unique challenges at the intersection of multiple important research fields, namely computer graphics, computer vision, machine learning, optimization, and high-performance computing. However, a solution to these problems provides strong cues for the extraction of higher-order semantic knowledge. It is incredibly important to solve the underlying core problems, since this will have high impact in multiple important research fields and provide key technological insights that have the potential to transform the visual computing industry. In summer 2019 Michael Zollhöfer joined Facebook.


Name of Researcher
Erik Reinhard
Homepage of Research Group
First Name
Last Name
Color Image Processing
Former Groups
Research Mission
Most images and videos are capture, stored, manipulated and displayed with limited fidelity and accuracy. Capture devices typically produce data that is limited and quantised in time, space, gamut and dynamic range. Subsequently, nearly all processing, transmission and display is achieved with limited fidelity. As a result, effective communication by means of visual media is sub-optimal, the immersive qualities of displays can be improved, and image processing and computer vision algorithms are required to make sense of data that has already lost information that cannot be recovered. The aim of our research is to develop algorithms and techniques to remove these limitations, and to convey a sense of visual realism. We investigate color-accurate image processing, and aim to deliver techniques for the calibrated capture, transmission and display of images and video. In cases where physical accuracy is impractical or impossible, for instance in certain inverse problems, we aim to develop perceptually plausible algorithms and demonstrate their effectiveness by means of visual psychophysics. In 2013 Erik Reinhard joined Technicolor Research and Innovation in Rennes, France, as a Principal Scientist.
Name of Research Group
Color Image Processing

Personal Info